Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
PLoS One ; 18(5): e0285664, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2317056

RESUMEN

In 2020, SARS-CoV-2 has spread rapidly across the globe, with most nations failing to prevent or substantially delay its introduction. While many countries have imposed some limitations on trans-border passenger traffic, the effect of these measures on the global spread of COVID-19 strains remains unclear. Here, we report an analysis of 3206 whole-genome sequences of SARS-CoV-2 samples from 78 regions of Russia covering the period before the spread of variants of concern (between March and November 2020). We describe recurring imports of multiple COVID-19 strains into Russia throughout this period, giving rise to 457 uniquely Russian transmission lineages, as well as repeated cross-border transmissions of local circulating variants out of Russia. While the phylogenetically inferred rate of cross-border transmissions was somewhat reduced during the period of the most stringent border closure, it still remained high, with multiple inferred imports that each led to detectable spread within the country. These results indicate that partial border closure has had little effect on trans-border transmission of variants, which helps explain the rapid global spread of newly arising SARS-CoV-2 variants throughout the pandemic.


Asunto(s)
COVID-19 , Esguinces y Distensiones , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Genómica , Federación de Rusia/epidemiología
2.
Pathogens ; 11(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2143433

RESUMEN

Analysis of genomic variability of pathogens associated with heightened public health concerns is an opportunity to track transmission routes of the disease and helps to develop more effective vaccines and specific diagnostic tests. We present the findings of a detailed genomic analysis of the genomic variability of the SARS-CoV-2 Omicron variant that spread in Russia between 8 December 2021 and 30 January 2022. We performed phylogenetic analysis of Omicron viral isolates collected in Moscow (n = 589) and downloaded from GISAID (n = 397), and identified that the BA.1 lineage was predominant in Russia during this period. The BA.2 lineage was also identified early in December 2021. We identified three cases of BA.1/BA.2 coinfections and one case of Delta/Omicron coinfection. A comparative genomic analysis of SARS-CoV-2 viral variants that spread in other countries allowed us to identify possible cases of transmission. We also found that some mutations that are quite rare in the Global Omicron dataset have a higher incidence rate, and identified genetic markers that could be associated with ways of Omicron transmission in Russia. We give the genomic variability of single nucleotide variations across the genome and give a characteristic of haplotype variability of Omicron strains in both Russia and around the world, and we also identify them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA